NADIA EISHIRBINI 72434.

QL. $\quad-12(y+2)=(x-4)^{2}$
i) sketch
(ii) vertex

* directrix is horizontal
iii) focus.

$$
4 d=-12
$$

isis) directrix.

$$
d=-3<0 \Rightarrow \text { open down. }
$$

$$
\begin{aligned}
& V(4,-2) \\
& y=1 .
\end{aligned}
$$

i)

ii) $V(4,-2)$
iii) $F(4,-5)$
iv) $y=1$.

Q2. $F(-6,2)$; direction $x=12$ eq=?

$$
\operatorname{Ld}\left(x-x_{0}\right)=\left(y-y_{0}\right)^{2}
$$

$$
\begin{aligned}
& V(3,2) \\
& \begin{aligned}
|d| & =|V F|=|V B| \\
& =9 \quad \Rightarrow-36(x-3)=(y-2)^{2}
\end{aligned}
\end{aligned}
$$

Q3. $F(-4,-8) \quad$ eq = ?
directrix $y=-12$.

$$
4 d\left(y-y_{0}\right)=\left(x-x_{0}\right)^{2}
$$

$$
\begin{gathered}
|d|=|V F|=|V B| \\
<\underbrace{}_{B(-4,-12)}=2 \\
(d>0)
\end{gathered}
$$

Hour GIBer 72631
Question

$$
1-2 y=3 x^{2}+12 x+4
$$

a) write in $5 f$
b) sketch
c) find tows, vertex and directrix line

$$
2-x=-5 y^{2}-20 y+12
$$

a) with in $5 f$
b) sketch
c) find jour vertex and directrix line

Solution

$$
\begin{aligned}
1-a) 2 y & =3 x^{2}+12 x+4 \\
2 y & =\left[3\left(x^{2}+4 x\right)\right]+4 \\
2 y & =\left[3\left(x^{2}+2\right)^{2}-4\right]+4 \\
2 y & =3(x+2)^{2}-12+4 \\
2 y & =3(x+2)^{2}-8 \\
4 & =3(x+2)^{2} \\
\frac{1}{2}(2 y+8) & =3+\frac{1}{2}\left[3(x+2)^{2}\right] \\
y+4 & =\frac{3}{2}(x+2)^{2} \times \frac{2}{3} \\
\frac{2}{3}(y+4) & \frac{2}{3}(y+4)=(x+2)^{2}
\end{aligned}
$$

$$
\begin{aligned}
& b-\text { Vertex }=(a x-2,-4) \\
& 4 D=\frac{2}{3} \quad D=\frac{1}{6} \\
& \text { Focus }=\left(-2, \frac{-23}{6}\right)
\end{aligned}
$$

2. $x=-5 y^{2}-20 y+12$
b) vertex $=(32,-2)$

$$
x=\frac{639}{20}
$$

$$
\text { * focus }=\left(\frac{641}{20},-2\right)
$$

directrix line goer through

$$
x=\left(\frac{639}{20}\right) f=\left(\frac{639}{20}, 2\right)
$$

$$
\begin{aligned}
& \text { a) } x=\left[-5\left(y^{2}+4 y\right)\right]+12 \\
& x=\left[-5(y+2)^{2}-4\right]+12 \\
& x=-5(y+2)^{2}+20+12 \\
& x=-5(y+2)^{2}+32 \\
& \frac{1}{5} \times(x-32)=\frac{-5(y+2)^{2}}{-5} \\
& 4 D=\frac{1}{5} \\
& \frac{1}{5}(x-32)=(y+2)^{2} \\
& \text { IP } \\
& D=0.05+\frac{1}{20}
\end{aligned}
$$

NADIN EISHIRBINI 72434
4.02 .2018

Q1.

$$
\begin{aligned}
& \frac{(y-1)^{2}}{16}-\frac{x^{2}}{9}=1 \\
& \frac{k}{\left.\frac{k}{2}\right)^{2}=16 \Rightarrow \frac{k}{2}=4} \\
& b^{2}=9 \Rightarrow b=3 . \\
& c(0,1) \\
& v_{1}(0,1+4) \\
& v_{1}(0,5) \quad v_{2}(0,1-4) \\
& v_{1}(0,-3)
\end{aligned}
$$

$$
\left|C F_{1}\right|=\sqrt{16+9}=5 \Rightarrow F_{1}(0,1+5) \quad F_{2}(0,1-5)
$$

$F_{1}(0,6) \quad\left[F_{2}(0,-4)\right.$.
Q2.

$$
\begin{aligned}
& (x+4)^{2}-\frac{(y-5)^{2}-1}{3} \\
& \left(\frac{k}{2}\right)^{2}=1 \Rightarrow \frac{k}{2}=1 \Rightarrow{ }^{2} \\
& b^{2}=3 \Rightarrow b^{2}=\sqrt{3} . \\
& C(-4,5) \\
& V_{1}(-4+1,5) \\
& \left.\frac{V_{1}(-3,5)}{C} \right\rvert\,(-4,5) \\
& \left|C F_{1}\right|=\sqrt{1+3}=2(-5,5) \\
&
\end{aligned}
$$

Q3. $F_{1}(2,4) \quad F_{2}(-10,4) \quad V_{2}(-6,4)$
a) $k=$?
b) $V_{1}=$?

$$
\begin{aligned}
& \quad c(-4,4) \quad\left|C V_{2}\right|=\frac{k}{2}=2 \Rightarrow|c| \\
& \left|\left|C V_{1}\right|=\left|C V_{2}\right|=k\right. \\
& \Rightarrow V_{1}(-2,4){ }^{2} \quad b^{2}=\left|C F_{2}\right|^{2}-\left(\frac{k}{2}\right)^{2}=6^{2}-2^{2}=32 . \\
& \left|C F_{2}\right|=6 \\
& \hline \frac{(x+4)^{2}-\frac{(y-4)^{2}}{32}=1}{4}
\end{aligned}
$$

HW 5.

1.
$|u|<|v|$
T.
a) Draw projuv
b) Draw proju.

$$
\operatorname{proj}_{v^{2}}^{u}=\overrightarrow{I B}
$$

2.

T_{2}

I
$\Rightarrow r_{1}$
T_{2}
a)

I
b)

$$
\operatorname{proj}_{u}^{v}=\overrightarrow{1 B}
$$

1
a) Draw projuv
b) Draw proju

$$
\operatorname{prog}_{v=1 B}^{u}=\overrightarrow{I B}
$$

3. $u\langle 1,4,6\rangle$ Find projuy and drow

$$
\begin{aligned}
& v<-2,10,1\rangle \\
& \operatorname{proj}_{v}^{u}=\frac{u_{1} v}{|v|^{2}} \cdot v . \\
& u_{1} \cdot v=1(-2)+4(10)+6(1)=44 \\
& |v|=\sqrt{2^{2}+10^{2}+1^{2}}=\sqrt{105} \\
& \left.p^{+0 j}{\underset{v}{v}}_{u}^{V}=\frac{44}{105} . V=\frac{44}{105}<-2,10,1\right\rangle=\left\langle-\frac{88}{105}, \frac{88}{21}, \frac{44}{105}\right.
\end{aligned}
$$

NOTES
Q Caiven $\Delta=\langle-4,7,2\rangle$
is the directional rector of live L and $(2,-4,10)$, fliers on L

1. Find parametric eqn of L

$$
\begin{aligned}
& \text { paramedic } \quad 2-4 L \quad-4+7 L \quad L 0+2 L \\
& x=2-4 L \\
& y=-4+7 L \\
& z=10+2 L \\
& \frac{4 L}{4}=\frac{2-x}{4} \quad \frac{7 L}{7}=\frac{y+4}{7} \quad \frac{2 L}{2}=\frac{2-10}{2} \\
& L=\frac{2-x}{4} \quad L
\end{aligned}
$$

2. find symmetric eqn ry L

$$
\frac{2-x}{4}=\frac{y+4}{7}=\frac{z-10}{2}
$$

3. Donn $(-2,3,12)$ lie on L

$$
\begin{aligned}
& \frac{2-(-2)}{4}=1 \\
& \frac{3+4}{7}=1 \\
& \frac{12-10}{2}=1
\end{aligned}
$$

yes they lie on L as all L values ane the same
Q. Given $(1,2,4),(10,3,0)$ nasin on line L parametric eqn $=$

$$
\begin{aligned}
& (-10-1,3,2,0-4)=(-11,1,-4) \\
& \langle-11,(,-4\rangle)(1,2,4) \\
& x=1-11 t \\
& y=2-t \\
& z=4+4 t
\end{aligned}
$$

$$
\begin{aligned}
& \frac{u t}{11}=\frac{1-x}{11} \\
& t=\frac{1-x}{11}
\end{aligned}
$$

$$
\begin{aligned}
t=2-y & \frac{4 t}{4}
\end{aligned}=\frac{2-9}{4}, ~ t=\frac{2-4}{4}
$$

Symmafric eqn $=$

$$
\frac{1-x}{11}=2-y=\frac{2-4}{4}
$$

NOTES

$$
\begin{aligned}
& \text { Notes } \\
& \text { Q. Gimen } w=\langle 1,4,7\rangle \\
& v=\langle-4,2,-10\rangle
\end{aligned}
$$

find $\left|\begin{array}{lll}p r o j & w & \varepsilon \\ \mid & \mid p r o j & w\end{array}\right|$
a)

$$
\begin{aligned}
& \mid \text { proi } \left.\begin{array}{c}
w \\
v
\end{array} \right\rvert\,=\frac{|w-v|}{|v|^{w}} \\
& =\frac{|-4+8-70|}{\left(\sqrt{4^{2}+2^{2}+10^{2}}\right)^{6}} \\
& =46 \frac{11 \sqrt{30}}{10}
\end{aligned}
$$

b) \mid proj $\underset{w}{v} \left\lvert\,=\frac{|v \cdot w|}{|w|}=\frac{66}{}\right.$
$=\frac{\text { Eddr }}{} \mathrm{Eu}$

$$
\frac{66}{\sqrt{4^{2}+1^{2}+7^{2}}}=\sqrt{66}
$$

(C) \qquad

$$
\text { . Hw Q1) } 4: x=4 t-1
$$

$$
\begin{aligned}
& y=2 t+2 \quad t=R \\
& z=10
\end{aligned}
$$

$$
L_{2}: x=3 w-6
$$

$$
\begin{aligned}
& y=-2 \omega+10 \quad \omega=R \\
& z=3 \omega+1
\end{aligned}
$$

$$
4 t-1=3 w-6
$$

$$
3 \omega+1=10 \text {. }
$$

$$
4 t-3 w=1-6
$$

$$
3 w=9
$$

$$
\begin{aligned}
& \text { Lb: } x=4 t-1 \\
& y=2 t+2 \quad t=R \\
& \begin{array}{l}
y=2 t+2 \\
z=4 t+3
\end{array} \quad t=R \\
& L_{2}: x=3 \omega-6 \\
& y=-2 \omega+10 \\
& \begin{array}{l}
y=-2 \omega+6 \\
z=3 \omega+1
\end{array} \quad \omega=R \\
& 4 t-1=3 \omega-6 \\
& 4 t-3 \omega=1-6 \quad 2 t+2 \omega=-2+10 \\
& 4 t-3 \omega=-5 \quad 4 t /-3 \omega=-5 \\
& -2(2 t+2 \omega=8) \\
& 2 t+2=-2 \omega+10 \\
& -4 t-4 \omega=-16 \\
& -7 \omega=-21 \\
& \omega=3
\end{aligned}
$$

$$
\begin{array}{r}
4 t-3, \gamma=-5 \\
3 \omega=9 \\
4 t=4 \\
t=1 \\
4(1)-3 \omega=-5 \\
\omega=3 . \\
t=1 \rightarrow(3,4,10) \\
\omega=3 \rightarrow(3,4,10)
\end{array}
$$

Q2.

We may assume that the two airplanes took off from two different airport at the same time!! So Plane 1 will reach the point ($3,4,10$) after one hour, where Plane 2 will arrive Both planes
will arive at the same point $(3,4,10)$ at the sonnafter 3 hours. at the same port after 3 hours. Hence no GOLLISION
\square
\qquad

$$
4 t-3(3)=-5
$$

$$
t=1
$$

$$
t=1 \rightarrow(3,4,7) \quad \text { don't intersect }
$$

$$
\omega=3 \rightarrow(3,4,10) \quad \text { because } 7 \neq 10 .
$$

HW 8: MTH 111, Spring 2018

Ayman Badawi

QUESTION 1. Given $L_{1}: x=2 t+1, y=-4 t+6, z=7 t+3$ and $L_{2}: x=6 w-9, y=-12 w+26, z=-21 w+30$. Convince me that L_{1} is not parallel to L_{2}. Also, does L_{1} intersect L_{2} ?

Solution: $D_{1}=<2,-4,7>, D_{2}=<6,-12,-21>$. Set $D_{1}=c D_{2}$, so $<2,-4,7>=c<6,-12,-21>=<$ $6 c,-12 c,-21 c>$. Hence $2=6 c$ implies $\mathbf{c}=\mathbf{1 / 3} ; \mathbf{- 4}=\mathbf{- 1 2} \mathbf{c}$ implies $\mathbf{c}=\mathbf{1} / \mathbf{3}(\mathbf{s o}$ far so good since we are getting the same value for \mathbf{c}); $7=-21 \mathbf{c}$ implies $\mathbf{c}=\mathbf{- 1 / 3}$. whips not good, so we cannot find one value for \mathbf{c} to make $D_{1}=c D_{2}$. Hence stop, L_{1} is not parallel to L_{2}.

Let us check if L_{1} intersects L_{2}. Make \mathbf{x} in $L_{1}=\mathbf{x}$ in L_{2} and make \mathbf{y} in $L_{1}=\mathbf{y}$ in L_{2}. We get the following two equations (after moving around)

$$
\begin{gathered}
2 t-6 w=-10 \\
-4 t+12 w=20
\end{gathered}
$$

. We multiply equation (1) with 2 , then we add both equations. We get $0=0$. Bad Luck (sad face). So we set x in $L_{1}=x$ in L_{2} and z in $L_{1}=z$ in L_{2}

$$
\begin{gathered}
2 t-6 w=-10 \\
7 t+21 w=27
\end{gathered}
$$

Multiply the first equation with -3.5 and then we add both equations. We get $42 w=62$. Hence $w=31 / 21$. Substitute for w in one of the equations (I choose second equation), we get $t=-4 / 7$. Now if L_{1} intersect L_{2}, then \mathbf{y}-value of L_{1} when $\mathbf{t}=-4 / 7$ must equal \mathbf{y}-value of L_{2} when $w=31 / 21$.
$y=-4 t+6$ in L_{1}, so substitute $t=-4 / 7$, we get $y=8.286$ (approx), $y=-12 w+26$ in L_{2}, so substitute $\mathbf{w}=$ 31/21, we get $y=8.286$ (approx).

Thus L_{1} indeed intersect L_{2}. So now to find the point of intersection. Let $t=-4 / 7$ find $\mathbf{x}, \mathbf{y}, \mathbf{z}$ from L_{1}. (you may choose $w=31 / 21$, find x, y, z in L_{2}, you must get the same point). we get ($-\mathbf{0 . 1 4 3}, 8.286,-1$)

QUESTION 2. $L_{1}: x=2 t+1, y=-4 t+6, z=7 t+3$ and $L_{2}: x=6 w-9, y=-12 w+26, z=21 w-30$. Convince me that L_{1} is parallel to L_{2} (Hint: Another method to solve this question (I gave it last semester, but students seem were not convinced !): First Check if $D_{1}=c D_{2}$ for some number c. If no, then stop and we conclude that they are not parallel. If yes, then choose a point Q randomly on L_{1} (Here you may choose $\mathrm{Q}=(1,6,3)$. If Q lies on L_{2}, then L_{1} lies on top of L_{2} and in this case they are not parallel. 2) If Q does not lie on L_{2}, then L_{1} is parallel to L_{2}.

Solution: $D_{1}=<2,-4,7>$ and $D_{2}=<6,-12,21>$. Set $D_{1}=c D_{2}$. One can conclude that $c=1 / 3$. Thus D_{1} is parallel to D_{2}. So we continue. Let $t=0$ in L_{1}. We get the point $Q=(1,6,3)$. Now check if Q lies on L_{2}. Set 1 $=6 \mathrm{w}-9$, we get $\mathrm{w}=10 / 6=5 / 3$. Set $6=-12 \mathrm{w}+26$, we get $w=20 / 12=5 / 3$ (so far so good, we getting the same value for \mathbf{w}). Set $3=21 w-30$, we get $\mathbf{w}=33 / 21=11 / 7$, whips... not good. So L_{1} is parallel to L_{2}

Faculty information

Ayman Badawi, Department of Mathematics \& Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates. E-mail: abadawi@aus.edu, www.ayman-badawi.com

d) $Q(20,10,-12.5)$

$$
\begin{aligned}
& P: 2 x+y+2 z=20, \quad N\langle 2,0,2\rangle \\
& I(0,0,10) \quad|Q<20,10,-22.5\rangle \\
& \left.|Q P|=||\vec{Q} \cdot \vec{N}| \quad| \begin{array}{l}
5 \\
|N|
\end{array} \right\rvert\, \frac{2 \sqrt{2}}{} \quad
\end{aligned}
$$

She used Diff. Method which is correct (but her N is false, note that

$$
\mathrm{N}=\langle 2,1,2\rangle \text {. Our method is }
$$

1). $2 x+y+2 z-20=0$ and $N=<2,1,2>$. 2) Substitute 20 for $\mathrm{x}, 10$ for y
and

$$
-12.5 \text { for } z \text {, so }|Q P|=|40+10-25-20| /|\mathrm{N}|=5 / \text { sqrt }\{4+1+4\}=5 / 3 \text { units }
$$

Leen Alnimer
Ha 10

$$
\begin{aligned}
& \text { Qt. } P_{1}: 3 x+2 y-z=-2 \quad P_{2}:-2 x-2 y+4 z=-4 \\
& N_{1}\langle 3,2,-1\rangle \quad N_{2}\langle-2,-2,4\rangle \\
& N_{1} \times N_{2}\left|\begin{array}{ccc}
i & j & k \\
3 & 2 & -1 \\
-2 & -2 & 4
\end{array}\right|=\langle | \begin{array}{cc}
2 & -1 \\
-2 & 4
\end{array}\left|,\left|\begin{array}{cc}
3 & -1 \\
-2 & 4
\end{array}\right|,\right| \begin{array}{ll}
3 & 2 \\
-2 & -2 \\
\hline
\end{array} \\
& \langle 6,-10,-2\rangle \text { intersect. }
\end{aligned}
$$

Let $z=0$.
$\langle 6,-10,-2\rangle$ intersect.

$$
\begin{array}{lc}
\begin{array}{ll}
3 x+2 y=-2 \\
-2 x-2 y=-4
\end{array} & \text { replace } \rightarrow 3(-6)+2 y=-2 \\
x=-6 & (-6,8,
\end{array}
$$

$(-6,8,0)$ intersectional point

QR. $p:-3 x+y+z=21$

$$
\begin{aligned}
L: x & =2 t \\
y & =4 t+10 \\
z & =2 t+5
\end{aligned}
$$

$$
D\langle 2,4,2\rangle
$$

$$
-3(2 t)+(4 t+10)+(2 t+5)=21
$$

$-6 t+4 t+10+2 t+5=21$ Can we Draw D
$15 \neq 21$
This is good question. The line inside the plane P ? does not lie in the plane, but D can $N \equiv\langle-3,1,1\rangle$. be drawn in the plane! D.N = 0 . So yes we can.

Q3. 1: $x=2 t+1$

$$
y=4 t-2
$$

$$
p: 3 x+2 y-z=4
$$

$$
z=5 t+1
$$

Find Q (intersection point).

$$
3(2 t+1)+2(4 t-2)-(5 t+1)=4
$$

$$
6 t+3+8 t-4-5 t-1=4
$$

$t=2 / 3$. Substitute $2 / 3$ for t in L, we get

$$
(3,-4,-1)(7 / 3,2 / 3,13 / 3)
$$

QU.

$$
\begin{gathered}
p_{1}: 3 x+9 y-3 z=12 \quad N_{1}\langle 3,9,-3\rangle \\
p_{2}=x+3 y-z=4 . \quad N_{2}\langle 1,3,-1\rangle
\end{gathered}
$$

$$
N_{1} \times N_{2}\left|\begin{array}{ccc}
1 & d & k \\
3 & 9 & -3 \\
1 & 3 & -1
\end{array}\right|=\langle | \begin{array}{cc}
9 & -3 \\
3 & -1
\end{array}\left|,-\left|\begin{array}{ll}
3 & -3 \\
1 & -1
\end{array}\right|,\left|\begin{array}{ll}
3 & 9 \\
13
\end{array}\right|\right.
$$

Q 5.

$$
\begin{aligned}
& \langle 0,0,0\rangle \\
& -5 z=7 \\
& 6 y+15 z=-20
\end{aligned}
$$

$$
N_{1}\langle 1,2,-5\rangle
$$

$$
\begin{array}{r}
.3(1)+9(d)-3(0) \\
=12 \\
(1,1,0)
\end{array}
$$

replace in

$$
N_{2}\langle-3,-6,15\rangle
$$

$$
\begin{aligned}
& N_{1} \times N_{2}\left|\begin{array}{ccc}
i & j & k \\
1 & 2 & -5 \\
-3 & -6 & -5
\end{array}\right| \\
& \left.=\langle | \begin{array}{cc|}
2 & -5 \\
-6 & 15
\end{array}, \quad\left|\begin{array}{cc}
1 & -5 \\
-3 & 15
\end{array}\right|,\left|\begin{array}{cc}
1 & 2 \\
-3 & -6
\end{array}\right|\right\rangle
\end{aligned}
$$

$$
\begin{array}{r}
x+3 y-2=4 \\
1+3(1)-0 \stackrel{?}{=} 4 \\
4=4 \text { res. }
\end{array}
$$

$$
\langle 0,0,0\rangle
$$

$$
\begin{aligned}
& x+2 y-5 z=7 \quad(5,1,0) \\
& 5+2(1)-5(0)=7 \\
& 7=7 \quad \text { replace in } \\
& -3 x-6 y+15 z=-20 \text {. } \\
& -3(5)-6+15(0) \stackrel{?}{=}-20 \\
& -21 \neq-20 \text { parallel. } \\
& A^{\left.A_{0} t_{h}\right)_{\text {e }}}
\end{aligned}
$$

$$
\text { v. } f(x)=12 x^{4}+10 x^{2}-2018 \text {. Find } f(-1) .
$$

Qi.

$$
\begin{aligned}
& y=5 x^{2}+12 x-4 \sqrt{x}+4 \\
& y=5 x^{2}+12 x-4 x^{1 / 2}+4 x^{-5} \\
& y^{\prime}=10 x+12-2 x^{-1 / 2}-20 x^{-6}=10 x+12-\frac{2}{\sqrt{x}}-\frac{20}{x^{6}}
\end{aligned}
$$

$$
\text { ii. } y=\frac{x^{2}+10 x-5 \sqrt{x}}{5 \sqrt{x^{2}}}
$$

$$
\frac{5 \sqrt{x^{2}}}{x^{2}+10 x-5 x^{1 / 2}+x^{-2 / 5} y=x^{\wedge}\{8 / 5\}+10 x^{\wedge}\{3 / 5\}-5 x^{\wedge}\{8 / 10} 0
$$

$$
y^{\prime}=2 x+10-\frac{5}{2} x^{-1 / 2}-\frac{2}{5} x^{-\frac{7}{5}}
$$

Now start cooking

$$
y^{\prime}=2 x+10-\frac{5}{2 \sqrt{x}}-\frac{2}{5 x^{7 / 5}}
$$

iii.

$$
\begin{aligned}
& y=4 x^{2}(x+3)^{2}+10 x-7 \\
& y=4 x^{2}\left(x^{2}+6 x+9\right)+10 x-7 \\
& y=4 x^{4}+24 x^{3}+36 x^{2}+10 x-7 \\
& y^{\prime}=16 x^{3}+72 x^{2}+72 x+10-0
\end{aligned}
$$

iv. $f(x)=8 \sqrt{x}+\frac{32}{x}$, find $f^{\prime}(4)$

$$
\begin{array}{lr}
\begin{array}{l}
=8 \sqrt{x}+\frac{32}{x}, \text { find } f(4) \\
f(x)=8 x^{1 / 2}+32 x^{-1}
\end{array} & f^{\prime}(4)=\frac{4}{\sqrt{4}}-\frac{32}{4^{2}} \\
f^{\prime}(x)=4 x^{-1 / 2}-32 x^{-2} & =\frac{4}{2}-\frac{32}{16} \\
f^{\prime}(x)=\frac{4}{\sqrt{x}}-\frac{32}{x^{2}} & f^{\prime}(4)=2-2=0
\end{array}
$$

Question 3 let $f(x)=\left(x^{2}+4 x+3\right)^{\prime \prime}$
i) Critical Values \rightarrow

$$
f^{\prime}(x)=0
$$

Sem Alai
ii) $*$ Increase $(-2, \infty)$

* decrease: $(-\infty,-2)$
iii) No local max.

Local min at $\overline{x=-2}$
iv) Sketch

$$
\begin{aligned}
& f^{\prime}(x)=11\left(x^{2}+4 x+3\right)^{10} \cdot(2 x+4) \\
& \left(x^{2}+4 y+3\right)=0 \text { or } 2 x+4=0 \\
& \text { 1) } \begin{array}{l}
(x+1)(x+3)(x)(x=-3) \\
(x=-1)
\end{array} \\
& 2 x=-4 \\
& \text { (3) } \overline{x=-2} \\
& f^{\prime}(-4)<0 \\
& f(-2.5)<0 \\
& f(-1.5)>0 \\
& f(0)>0
\end{aligned}
$$

4) $f(x)=3 x^{2}+\sqrt[3]{2 x+1}+7 x, \quad x=0$

$$
\begin{gathered}
\dot{j} \quad f(0)=3(0)^{2}+\sqrt[3]{2(0)}+1+7(0) \\
f(0)=1 \quad Q(0,1)
\end{gathered}
$$

*eq. of the tangent line:

$$
\begin{aligned}
& y=m x+b \\
& \text { to find } m,-\Delta f^{\prime}(0) \\
& f^{\prime}(x)=6 x+\frac{1}{3}(2 x+1)^{-\frac{2}{3}} \cdot(2)+7 \\
& f^{\prime}(x)=6 x+\frac{2}{3}(2 x+1)^{-\frac{2}{3}}+7 \\
& f^{\prime}(0)=6(0)+\frac{2}{3}(2(0)+1)^{-\frac{2}{3}}+7 \\
& f^{\prime}(0)=\frac{23}{3} \rightarrow m=\frac{23}{3}
\end{aligned}
$$

- Sub $x \phi y(Q)$ to find b value.

$$
\begin{array}{r}
y=m x+b \rightarrow 1=\frac{23}{3}(0)+b \\
1=b
\end{array}
$$

* equation of the tangent line:

$$
y=\frac{23}{3} x+1
$$

* equation of the normal line $y=m x+b$

$$
y=-\frac{23}{3} m=-1 \quad m=-\frac{3}{23} x+1 \quad \begin{aligned}
& 1=\frac{-3}{23}(0)+b \\
& 1=b
\end{aligned}
$$

$$
\text { 1) } \begin{aligned}
y & =x\left(x^{2}+3\right)^{2} \\
y & =x\left(x^{4}+6 x^{2}+9\right. \\
y & =x^{5}+6 x^{3}+9 x \\
y^{\prime} & =5 x^{4}+18 x^{2}+9
\end{aligned}
$$

$$
\begin{aligned}
& \text { 2) } y=3(2 x+1)^{\prime \prime}+\sqrt[5]{\left(2 x^{2}+3 x-2\right)}-7 x^{4}+2 x^{2}-10 \\
& y=3(2 x+1)^{\prime \prime}+\left(2 x^{2}+3 x-2\right)^{1 / 5}-7 x^{4}+2 x^{2}-10 \\
& y^{\prime}=33(2 x+1)^{10} \cdot(2)+\frac{1}{5}\left(2 x^{2}+3 x-2\right)^{-4 / 5} \cdot(4 x+3)-28 x^{3}+4 x
\end{aligned}
$$

$$
\text { 3) } \begin{aligned}
y & =12(\sqrt{x}+2 x+4)^{10} \\
y^{\prime} & =120(\sqrt{x}+2 x+4)^{9} \cdot\left(\frac{1}{2} x^{-1 / 2}+2\right)
\end{aligned}
$$

* If \ln is inside \rightarrow
* If outside. \rightarrow normal.

HW 15. LOGARITHMS.

$$
\begin{aligned}
& \text { 1. } \quad y= 3[\ln (2 x+7)]^{10} . \\
& 3 \times 10[\ln (2 x+7)]^{9} . \\
& \rightarrow \quad y^{\prime}=30[\ln (2 x+7)]^{9} \times \frac{2}{2 x+7 .}
\end{aligned}
$$

(When Ln is inside).
2. $3 \operatorname{Ln}(2 x+7)^{10}$.

$$
30 \times \ln (2 x+7) \rightarrow \frac{30(2)}{2 x+7} \rightarrow \frac{60}{2 x+7} .
$$

3. $y=\left((x+1) \ln (3 x-1)^{3}\right)$

$$
\begin{gathered}
u \cdot v \rightarrow u^{\prime}+u v^{\prime} \\
y^{\prime}=(1) \ln (3 x-1)^{3}+(x+1) \cdot 3 \ln \frac{3}{3 x-1} . \\
y^{\prime}=\ln (3 x-1)^{3}+3 x+3 \times \frac{3}{3 x-1} .
\end{gathered}
$$

4. $y=x \ln (2 x+1)$
when $x=2$.

$$
\begin{aligned}
& y=2 \ln (2(2)+1) . \quad y=3.2 \quad(2,3,2) \text {, } \\
& y=m^{\prime} x^{\prime} c+c . \\
& m=v^{\prime} \cdot v \rightarrow V^{\prime} V+U V^{\prime} \rightarrow \ln (2 x+1)+\frac{x \times 2}{2 x+1} \rightarrow \ln (2 x+1)+\frac{x 2 x}{2 x+1} \\
& \ln (2(2)+1)+\frac{2(2)}{2(2)+1}=2 \cdot 4: . . \\
& 3.2=2.4(2)+c \\
& 3.2=4.8+c \quad c=-1.6 . \quad y=2.4 x-1.6 . \\
& \text { Equation of } \\
& \text { TANGENT, }
\end{aligned}
$$

EqUATION OF NORMAL.

$$
\begin{gathered}
m=-\frac{1}{2.4} \quad y=m x+c . \\
3.2=\left(-\frac{1}{2.4}\right)(2)+c \\
3.2=-\frac{5}{6}+c \quad c=\frac{121}{30} . \quad \text { (or.4.0333 } \\
y=-\frac{1}{2.4} x+\frac{121}{30}
\end{gathered}
$$

5. $y=(x+1)+\ln (3 x-1)^{3}$.

$$
1+\frac{9 \text { 角 } t}{3 x-1}
$$

6. $y=e^{(2 x+1)} \times \operatorname{Ln}(7 x+2), \rightarrow u \cdot v \rightarrow u^{\prime}+u v^{\prime}$

$$
\begin{aligned}
& y^{\prime}=e^{(2 x+1)} \times 2 \ln (7 x+2)+e^{(2 x+1)} \times \frac{7}{7 x+2} . \\
& \text { 7. } \log (\sqrt{x}+3 x-1) \cdots \frac{\log a}{\log b}=\frac{\ln a}{\ln b} \\
& y=\frac{\ln (\sqrt{x}+3 x-1)}{\ln (10)} \rightarrow \ln \left(x^{1 / 2}+3 x-1\right) \\
& y^{\prime}=\frac{1 / 2 x^{-1 / 2}+3}{x^{1 / 2}+3 x-1} \\
& \ln (10) .
\end{aligned}
$$

HW: (1)

$$
\begin{aligned}
=\int 2 x^{-12}+4 x^{-11} d x & =\frac{-2}{11} x^{-11}+\frac{-4}{10} x^{-10}+C \\
& =\frac{-2}{11 x^{-1}}-\frac{4}{10 x^{10}}+C
\end{aligned}
$$

(2)

$$
\begin{aligned}
& \int \frac{2 x^{3}+2}{x^{3}+3 x+7} d x=\frac{2}{3} \int \frac{1}{3} \cdot \frac{x^{2}+1}{x^{3}+3 x+7} d x \\
& =\frac{2}{3} \int 3\left(x^{2}+1\right)\left(x^{3}+3 x+7\right)^{-1} d x=\frac{2}{3} \ln \left(x^{3}+3 x+7\right)+C
\end{aligned}
$$

3) $\int\left(4 x^{3}+e^{x}\right) e^{\left(x^{4}+e^{x}\right)} d x=e^{\left(x^{4}+e^{x}\right)}+c$
(4)

$$
\begin{aligned}
& \int_{a}^{b} f(x) d x=\int_{0}^{9} \sqrt{x}+4 d x \\
= & \int_{0}^{9} x^{+\frac{1}{2}}+4 d x=\frac{2}{3} x^{\frac{3}{2}}+\left.4 x\right|_{0} ^{9} \\
= & \left(\frac{2}{3}(9)^{\frac{3}{2}}+4(9)\right)-\left(\frac{2}{3}(0)^{\frac{3}{2}}+4(0)\right) \\
= & \left(\frac{2}{3}(9)^{\frac{3}{2}}+36\right)=18+36=4 \text { 4 }\left.\right|_{0} \text { uni }^{2}
\end{aligned}
$$

(5)

$$
\begin{aligned}
& \int w^{2}(2 w+1)^{2} d w=\int w^{2}\left(4 w^{2}+4 w+1\right) d w \\
&=\int\left(4 w^{4}+4 w^{3}+w^{2}\right) d w=\frac{4}{5} w^{5}+\frac{4}{4} w^{4}+\frac{1}{3} w^{3}+C \\
&=\frac{4}{5} w^{5}+w^{4}+\frac{1}{3} w^{3}+C
\end{aligned}
$$

(6)

$$
\begin{aligned}
& \int \frac{(4 x+2)}{\sqrt{x^{2}+x+1}} d x=\int(4 x+2)\left(x^{2}+x+1\right)^{-\frac{1}{2}} d x \\
& =2 \int(2 x+1)\left(x^{2}+x+1\right)^{-1 / 2} d x=\frac{2}{1 / 2}\left(x^{2}+x+1\right)^{1 / 2}+C \\
& =4\left(x^{2}+x+1\right)^{1 / 2}+C
\end{aligned}
$$

